Respuesta :
Answer :
(a) The value of [tex]\Delta G^o[/tex] for the reaction is -4.7 kJ/mol
(b) The value of [tex]\Delta G^o[/tex] for the reaction is 7.55 kJ/mol
(c) The value of [tex]\Delta G^o[/tex] for the reaction is -13.7 kJ/mol
Explanation :
The relation between the equilibrium constant and standard Gibbs free energy is:
[tex]\Delta G^o=-RT\times \ln K_{eq}[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy
R = gas constant = 8.314 J/K.mol
T = temperature = [tex]25^oC=273+25=298K[/tex]
[tex]K_{eq}[/tex] = equilibrium constant
Now we have to calculate the value of [tex]\Delta G^o[/tex] for the following reactions.
(a) [tex]\text{Glutamate}+\text{oxaloacetate}\overset{\text{aspartate aminotranferase}}\rightleftharpoons \text{aspartate}+\alpha \text{-ketoglutarate}[/tex] [tex]K_{eq}=6.8[/tex]
[tex]\Delta G^o=-RT\times \ln K_{eq}[/tex]
[tex]\Delta G^o=-(8.314J/K.mol)\times (298K)\times \ln (6.8)[/tex]
[tex]\Delta G^o=-4.7\times 10^{3}J/mol=-4.7kJ/mol[/tex]
Thus, the value of [tex]\Delta G^o[/tex] for the reaction is -4.7 kJ/mol
(b) [tex]\text{Dihydroxyacetone phosphate}\overset{\text{triose phosphate isomerase}}\rightleftharpoons \text{glyceraldehyde3-phosphate}[/tex] [tex]K_{eq}=0.0475[/tex]
[tex]\Delta G^o=-RT\times \ln K_{eq}[/tex]
[tex]\Delta G^o=-(8.314J/K.mol)\times (298K)\times \ln (0.0475)[/tex]
[tex]\Delta G^o=7.55\times 10^{3}J/mol=7.55kJ/mol[/tex]
Thus, the value of [tex]\Delta G^o[/tex] for the reaction is 7.55 kJ/mol
(c) [tex]\text{Fructose6-phosphate}+\text{ATP}\overset{phosphofructokinase}\rightleftharpoons \text{fructose1,6 -bisphosphate}+\text{ADP}[/tex] [tex]K_{eq}=254[/tex]
[tex]\Delta G^o=-RT\times \ln K_{eq}[/tex]
[tex]\Delta G^o=-(8.314J/K.mol)\times (298K)\times \ln (254)[/tex]
[tex]\Delta G^o=-1.37\times 10^{4}J/mol=-13.7kJ/mol[/tex]
Thus, the value of [tex]\Delta G^o[/tex] for the reaction is -13.7 kJ/mol