Respuesta :
Answer:
0.89524 rad/s
Explanation:
N = Number of turns = 20
r = Radius of coil of wire = [tex]4\times 10^{-2}\ m[/tex]
B = Magnetic field = [tex]5\times 10^{-2}\ T[/tex]
I = Current = [tex]3\times 10^{-3}\ A[/tex]
A = Area of coil = [tex]\pi r^2[/tex]
R = Resistance = [tex]1.5\ \Omega[/tex]
Maximum current in a generator is given by
[tex]I=\frac{NBA\omega}{R}\\\Rightarrow \omega=\frac{IR}{NBA}\\\Rightarrow \omega=\frac{IR}{NB\pi r^2}\\\Rightarrow \omega=\frac{3\times 10^{-3}\times 1.5}{20\times 5\times 10^{-2}\times \pi\times (4\times 10^{-2})^2}\\\Rightarrow \omega=0.89524\ rad/s[/tex]
The angular frequency is 0.89524 rad/s
Answer:
w = 0.8957 rad/sec
Explanation:
we know that Maximum current in coil can be calculated as
[tex]I = \frac{NBAw}{R}[/tex]
where N represent number of turn = 20
B = magnetic field [tex]= 5 \times 10^{-2} T[/tex]
R is resistance = 1.5 ohm
[tex]I = 3.0\times 10^{-3} A[/tex]
A = area [tex]= \pi r^2[/tex]
solving for angular frequency w
[tex]w = \frac{I R}{NB \pi r^2}[/tex]
[tex]w = \frac{3.0\times 10^{-3} \times 1.5}{20\times 5\times 10^{-2} \pi \times(4\times 10^{-2})^2}[/tex]
w = 0.8957 rad/sec