Answer: [tex](f \circ g)(x)=10080x[/tex] , where x is the number of weeks.
It computes the number of minutes in x weeks.
Step-by-step explanation:
Given : The function defined by [tex]f(x) = 60x[/tex] computes the number of minutes in x hours, and the function defined by[tex]g(x) = 168x[/tex], computes the number of hours in x weeks.
Then , the composite function is given by :-
[tex](f \circ g)(x)=f(g(x))\\\\(f \circ g)(x)=f(168x)\\\\(f \circ g)(x)= 60(168x)\\\\(f \circ g)(x)=(60\times168)x\\\\(f \circ g)(x)=10080x[/tex]
Hence, the required composite function is :
[tex]\(f \circ g)(x)=10080x[/tex] , where x is the number of weeks.
Simply, the above composite function computes the number of minutes in x weeks.