Answer:
[tex]v_{f1}=1.758m/s[/tex]
[tex]v_{f1}=1.758m/s[/tex]
Explanation:
The collision is elastic so we can use the conservation of momentum
[tex]P_i=P_f[/tex]
[tex]m_1*v_1+m_2*v_2=m_1*v_{f1}+m_2*v_{f2}[/tex]
Describe the motion in axis x'
[tex]170g*2.0m/s*cos(30)+156g*0m/s=170*cos(10)*v_{f1}+156g*0m/s[/tex]
[tex]294.44 g*m/s=167.41g*v_{f1}[/tex]
[tex]v_{f1}=1.758m/s[/tex]
Describe the motion in axis y'
[tex]170g*2.0m/s*sin(30)=170g*1.75m/s*sin(10)+156*v_{f2}[/tex]
[tex]v_{f2}=1.55m/s[/tex]