Answer:
(4,-1)
Step-by-step explanation:
Given
3 Co-ordinates of a parallelogram ABCD
A=(1,-3)
B=(1,0)
C=(4,2)
D=(a,b)
One of the property of a parallelogram is that the diagonals bisect each other
In this case, AC and BD bisect each other, Therefore the middle point of AC and BD coincide
⇒Mid-point of AC= Mid-point of BD
(mid point of 2 points (x,y) and (k,l) is [tex]=(\frac{(k+x)}{2} ,\frac{(l+y)}{2})[/tex])
[tex](\frac{(1+4)}{2} ,\frac{(-3+2)}{2})=(\frac{(1+a)}{2} ,\frac{(0+b)}{2})\\(\frac{5}{2} ,\frac{-1}{2})=(\frac{(1+a)}{2} ,\frac{b}{2})[/tex]
Compare x and y co-ordinates on both sides
⇒[tex]\frac{5}{2} =\frac{1+a}{2}[/tex]
a=4
⇒[tex]\frac{-1}{2}=\frac{b}{2} }[/tex]
b=-1
Therefore D=(4,-1)