Respuesta :

x = 12 in

Step-by-step explanation:

       The diagram depicts a Right-Pyramid with a square base. The height of the pyramid is given as [tex]\dfrac{x}{2}\text{ in}[/tex] and the side of the base is given as [tex]x\text{ in}[/tex].

       For any pyramid, the volume is given by the result

[tex]\text{Volume = }\dfrac{1}{3}\times \text{ Area of base }\times \text{ Height}[/tex]

So, Volume of given pyramid = [tex]\dfrac{1}{3}\times (x^{2}\text{ in}^{2}) \times(\dfrac{x}{2} \text{ in})=\dfrac{x^{3}}{6}\text{ in}^{3}[/tex]

Volume is given as [tex]288\text{ in}^{3}[/tex]

[tex]\dfrac{x^{3}}{6}\text{ = }288\text{ in}^{3}\\\\x^{3}\text{ = }1728\text{ in}^{3}\\x\text{ = }12\text{ in}[/tex]

∴ Value of [tex]x[/tex] = [tex]12\text{ in}[/tex]

Answer:

[tex]x=12in[/tex]

Step-by-step explanation:

the formula for the volume of a square pyramid is:

[tex]V=\frac{Ab*h}{3}[/tex]

where

[tex]Ab[/tex] is the area of the base (the area of the square)

and [tex]h[/tex] if the height of the pyramid

---------

the length of the side of the square is [tex]x[/tex], so the area of the base of the pyramid is:

[tex]Ab=x*x=x^2[/tex]

and we already know the height in terms of x:

[tex]h=\frac{1}{2}x[/tex]

and the Volume:

[tex]V=288in^3[/tex]

so we subtitute all of this in the formula for volume:

[tex]288=\frac{x^2(\frac{1}{2}x )}{3} \\288=\frac{x^3}{6}[/tex]

and finally we clear for [tex]x[/tex]

[tex]288*6=x^3\\1728=x^3\\\sqrt[3]{1728}=x\\12=x[/tex]

the value of x is 12 inches.

ACCESS MORE