Kuta Software - Infinite Pre-Algebra
Name
Solving Systems of Equations by Substitution
Date
Solve each system by substitution.
1) y = 7x-10
y=-3
2) y=-8
y=-2x - 12
3) y=6x
y=5x+7
4) y = 9x -9
y=9​

Respuesta :

Answer:

Part 1) The solution of the system is the point (1,-3)

Part 2) The solution of the system is the point (-2,-8)

Part 3) The solution of the system is the point (7,42)

Part 4) The solution of the system is the point (2,9)

Step-by-step explanation:

Part 1) we have

[tex]y=7x-10[/tex] ----> equation A

[tex]y=-3[/tex] ----> equation B

Solve the system by substitution

Substitute equation B in equation A

[tex]-3=7x-10[/tex]

Solve for x

Adds 10 both sides

[tex]-3+10=7x[/tex]

[tex]7=7x[/tex]

Divide by 7 both sides

[tex]x=1[/tex]

The solution of the system is the point (1,-3)

Part 2) we have

[tex]y=-8[/tex] ----> equation A

[tex]y=-2x-12[/tex] ----> equation B

Solve the system by substitution

Substitute equation A in equation B

[tex]-8=-2x-12[/tex]

Solve for x

Adds 12 both sides

[tex]-8+12=-2x[/tex]

[tex]4=-2x[/tex]

Divide by -2 both sides

[tex]x=-2[/tex]

The solution of the system is the point (-2,-8)

Part 3) we have

[tex]y=6x[/tex] ----> equation A

[tex]y=5x+7[/tex] ----> equation B

Solve the system by substitution

Substitute equation A in equation B

[tex]6x=5x+7[/tex]

Solve for x

Subtract 5x both sides

[tex]6x-5x=7[/tex]

[tex]x=7[/tex]

Find the value of y

[tex]y=6x[/tex]  ----> [tex]y=6(7)=42[/tex]

The solution of the system is the point (7,42)

Part 4) we have

[tex]y=9x-9[/tex] ----> equation A

[tex]y=9[/tex] ----> equation B

Solve the system by substitution

Substitute equation B in equation A

[tex]9=9x-9[/tex]

Solve for x

Adds 9 both sides

[tex]9+9=9x[/tex]

[tex]18=9x[/tex]

Divide by 9 both sides

[tex]x=2[/tex]

The solution of the system is the point (2,9)