Respuesta :
Answer with explanation:
Let [tex]\mu[/tex] be the average life of light bulbs.
As per given , we have
Null hypothesis : [tex]H_0 : \mu =5400[/tex]
Alternative hypothesis : [tex]H_a : \mu >5400[/tex]
Since [tex]H_a[/tex] is right-tailed and population standard deviation is also known, so we perform right-tailed z-test.
Formula for Test statistic : [tex]z=\dfrac{\overlien{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
where, n= sample size
[tex]\overline{x}[/tex]= sample mean
[tex]\mu[/tex]= Population mean
[tex]\sigma[/tex]=population standard deviation
For [tex]n=95,\ \overline{x}=5483\ \&\ \sigma=500[/tex], we have
[tex]z=\dfrac{5483-5400}{\dfrac{500}{\sqrt{95}}}=1.61796786124\approx1.6180[/tex]
Using z-value table , Critical one-tailed test value for 0.06 significance level :
[tex]z_{0.06}=1.5548[/tex]
Decision : Since critical z value (1.5548) < test statistic (1.6180), so we reject the null hypothesis .
[We reject the null hypothesis when critical value is less than the test statistic value .]
Conclusion : We have enough evidence at 0.06 significance level to support the claim that the new filament yields a longer bulb life