Respuesta :
Answer:
183.710 feet
Step-by-step explanation:
The angle of elevation from the first point to the top of the building is 45° i.e.∠ABD = 45°
The angle of elevation from the second point to the top of the building is 60° i.e.∠ACD = 60°
The distance from the second point to the top of the building is 150 ft i.e.AC = 150 feet
We are supposed to find the distance from the first observation point to the top of the tower i.e.AB = x
In ΔACD
[tex]Sin \theta = \frac{Perpendicular}{Hypotenuse}[/tex]
[tex]Sin 60^{\circ} = \frac{AD}{AC}[/tex]
[tex]\frac{\sqrt{3}}{2} = \frac{AD}{150}[/tex]
[tex]\frac{\sqrt{3}}{2} \times 150 =AD[/tex]
[tex]129.903 =AD[/tex]
In ΔABD
[tex]Sin \theta = \frac{Perpendicular}{Hypotenuse}[/tex]
[tex]Sin 45^{\circ} = \frac{AD}{AB}[/tex]
[tex]\frac{1}{\sqrt{2}}= \frac{129.903}{AB}[/tex]
[tex]AB= \frac{129.903}{\frac{1}{\sqrt{2}}}[/tex]
[tex]AB= 183.710[/tex]
Hence the distance from the first observation point to the top of the tower is 183.710 feet
![Ver imagen wifilethbridge](https://us-static.z-dn.net/files/d5b/cef5b5fcc0177be3df7c829c155cb917.png)