Answer:
Length of base of the triangle is 14 inches.
Explanation;
Given:
Area of A triangle = 77 square inches
The base is 3 inches greater than the height
To find:
The length of the base of the triangle=?
Solution:
Let assume height of the triangle = x
As base is 3 inches greater than the height, so base of the triangle = x + 3
[tex]\text{{Area of triangle}} = \frac{1}{2}\times height\times base[/tex]=> [tex]Area of triangle = \frac{1}{2}\times x \times(x+3)[/tex]
And as given that area of triangle = 77 , we get
[tex]\frac{1}{2}\times x\times(x+3)=77[/tex]
=> [tex]x^2 + 3x = 77 \times 2[/tex]
=> [tex] x^2 + 3x-154[/tex] = 0
[tex] x^2 + 3x-154[/tex] = 0
Solving above equation using quadratic formula.
General form of quadratic equation is
[tex]ax^2 +bx +c = 0[/tex]
And quadratic formula for getting roots of quadratic equation is
[tex]x=\frac{-b\pm\sqrt{(b^2-4ac)}}2a[/tex]
In our case b = 3 , a = 1 and c = -154
Calculating roots of the equation we get
[tex]x=\frac{-(3)\pm\sqrt{(3^2-4(1)( -154) )}}{(2\times 1)}[/tex]
[tex]x=\frac{-(3)\pm\sqrt{(9+616)}}{(2\times1)}[/tex]
[tex]x=\frac{-3\pm\sqrt{625}}{2}[/tex]
[tex]x=\frac{-(3)\pm25}{2}[/tex]
[tex]x=\frac{(-3+25)}{2}[/tex] , [tex]x=\frac{(-3-25)}{2}[/tex]
x= 11 , x= -14
Since height cannot be negative, ignoring negative value we get
x= 11
Base of the triangle = x + 3 = 11 + 3 = 14
Hence length of base of the triangle is 14 inches.