Respuesta :

Answer:

Length of base of the triangle is 14 inches.

Explanation;

Given:

Area of A triangle = 77 square inches

The base is 3 inches greater than the height

To find:

The length of the base of the triangle=?

Solution:

Let assume height of the triangle = x  

As base is 3 inches greater than the height, so base of the triangle = x + 3

[tex]\text{{Area of triangle}} = \frac{1}{2}\times height\times base[/tex]=> [tex]Area of triangle = \frac{1}{2}\times x \times(x+3)[/tex]

And as given that area of triangle = 77 , we get

[tex]\frac{1}{2}\times x\times(x+3)=77[/tex]

=> [tex]x^2 + 3x = 77 \times 2[/tex]

=> [tex] x^2 + 3x-154[/tex] = 0

[tex] x^2 + 3x-154[/tex] = 0

Solving above equation using quadratic formula.

General form of quadratic equation is  

[tex]ax^2 +bx +c = 0[/tex]

And quadratic formula for getting roots of quadratic equation is  

[tex]x=\frac{-b\pm\sqrt{(b^2-4ac)}}2a[/tex]

In our case b = 3 , a = 1 and c = -154

Calculating roots of the equation we get

[tex]x=\frac{-(3)\pm\sqrt{(3^2-4(1)( -154) )}}{(2\times 1)}[/tex]

[tex]x=\frac{-(3)\pm\sqrt{(9+616)}}{(2\times1)}[/tex]

[tex]x=\frac{-3\pm\sqrt{625}}{2}[/tex]

[tex]x=\frac{-(3)\pm25}{2}[/tex]

[tex]x=\frac{(-3+25)}{2}[/tex]   ,  [tex]x=\frac{(-3-25)}{2}[/tex]

x= 11 ,  x= -14

Since height cannot be negative, ignoring negative value we get

x= 11  

Base of the triangle = x + 3 = 11 + 3 = 14

Hence length of base of the triangle is 14 inches.

ACCESS MORE