Thckumms
contestada

Find the intensity of a 55 dB sound given lo-10-12 wm2
2.23 x 10-6 Wim2
1.01 x 10-7 Wm2
03.16 x 10-7 win
O5.43 x 10-6 Wm2 .

Respuesta :

Answer:

Intensity=[tex]I=3.16\times 10^{-7}\ W\ m^{-2}[/tex]

Explanation:

Given:

[tex]\beta=55\ dB\\I_o=10^{-12}\ W\ m^{-2}[/tex]

The sound level [tex]\beta[/tex] in dB with intensity [tex]I[/tex]

and reference intensity [tex]I_0[/tex] is given by:

[tex]\beta(dB)=10 \log_{10}(\frac{I}{I_0})[/tex]

Plugging in values.

[tex]55=10 \log_{10}(\frac{I}{10^{-12}})[/tex]

Dividing both sides by 10.

[tex]\frac{55}{10}=\frac{10 \log_{10}(\frac{I}{10^{-12}})}{10}[/tex]

[tex]5.5=\log_{10}\frac{I}{10^{-12}}[/tex]

The above can be written as

[tex]10^{5.5}=\frac{I}{10^{-12}}[/tex]

Multiplying both sides by [tex]10^{-12}[/tex]

[tex]10^{5.5}\times 10^{-12}=10^{-12}\times \frac{I}{10^{-12}}[/tex]

[tex]10^{(5.5-12)}=I[/tex]

[tex]10^{(-7.5)}=I[/tex]

[tex]I=3.16\times 10^{-7}\ W\ m^{-2}[/tex]

Intensity =[tex]I=3.16\times 10^{-7}\ W\ m^{-2}[/tex]

ACCESS MORE