Respuesta :
Answer:
T₂=610.8⁰C
Qa=1225 KJ
Qr=735 KJ
Explanation:
Given that
T₁ = 1200⁰C
T₁ =1473 K
η= 40% = 0.4
We know that efficiency of Carnot cycle given as
[tex]\eta=1-\dfrac{T_2}{T_1}[/tex]
T₁ = temperature of source
T₂= temperature of sink
[tex]\eta=1-\dfrac{T_2}{T_1}[/tex]
[tex]0.4=1-\dfrac{T_2}{1473}[/tex]
T₂=883.8 K
T₂=610.8⁰C
Lets take heat supplied is Qa
We know that
[tex]\eta=\dfrac{W}{Q_a}[/tex]
W= Net work output
[tex]\eta=\dfrac{W}{Q_a}[/tex]
[tex]0.4=\dfrac{490}{Q_a}[/tex]
Qa=1225 KJ
From first law of thermodynamics
Qa= W+ Qr
Qr=Heat rejected to sink
Qa= W+ Qr
1225 = 490 + Qr
Qr=735 KJ
Answer:
Answered
Explanation:
Given
Heat source temperature T_1= 1200° C = 1473 K
thermal efficiency η =40% = 0.4
maximum work output W_{max} = 490 kJ
we know that
[tex]\eta= \frac{W_{max}}{Q_1}[/tex]
Heat supplied Q_1 can be calculated as 1225 kJ by putting values of η and W_{max} in the above equation.
Now we also know that [tex]W_{max}= Q_1-Q_2[/tex]
where Q_2 is the heat rejected to the sink
now [tex]Q_2= Q_1-W_{max}[/tex]
therefore, Q_2= 1225-490= 735 kJ
to calculate sink temperature T_2
we use the formula
[tex]\eta= 1-\frac{T_2}{T_1}[/tex]
putting values of η and T_1 we get
T_2= 883.8 K= 610.8° C