Part A: Three gases (8.00 g of methane, CH_4, 18.0g of ethane, C_2H_6, and an unknown amount of propane, C_3H_8) were added to the same 10.0- L container. At 23.0 degrees C, the total pressure in the container is 5.40 atm. Calculate the partial pressure of each gas in the container.Part B: A gaseous mixture of O_2 and N_2 contains 37.8 % nitrogen by mass. What is the partial pressure of oxygen in the mixture if the total pressure is 405 mmHg?

Respuesta :

Explanation:

Part A:

Total pressure of the mixture = P = 5.40 atm

Volume of the container = V = 10.0 L

Temperature of the mixture = T = 23°C = 296.15 K

Total number of moles of gases = n

PV = nRT (ideal gas equation)

[tex]n=\frac{PV}{RT}=\frac{5.40 atm\times 10.0 L}{0.0821 atm L/mol K\times 296.15 K}=2.22 mol[/tex]

Moles of methane gas = [tex]n_1=\frac{8.00 g}{16 g/mol}=0.5 mol[/tex]

Moles of ethane gas  =[tex]n_2=\frac{18.0 g}{30 g/mol}=0.6 mol[/tex]

Moles of propane gas = [tex]n_3[/tex]

[tex]n=n_1+n_2+n_3[/tex]

[tex]2.22=0.5 mol +0.6 mol+ n_3[/tex]

[tex]n_3= 2.22 mol - 0.5 mol -0.6 mol= 1.12 mol[/tex]

Mole fraction of methane =[tex]\chi_1=\frac{n_1}{n_1+n_2+n_3}=\frac{n_1}{n}[/tex]

[tex]\chi_1=\frac{0.5 mol}{2.22 mol}=0.2252[/tex]

Similarly, mole fraction of ethane and propane :

[tex]\chi_2=\frac{n_2}{n}=\frac{0.6 mol}{2.22 mol}=0.2703[/tex]

[tex]\chi_3=\frac{n_3}{n}=\frac{1.12 mol}{2.22 mol}=0.5045[/tex]

Partial pressure of each gas can be calculated by the help of Dalton's' law:

[tex]p_i=P\times \chi_1[/tex]

Partial pressure of methane gas:

[tex]p_1=P\times \chi_1=5.40 atm\times 0.2252=1.22 atm[/tex]

Partial pressure of ethane gas:

[tex]p_2=P\times \chi_2=5.40 atm\times 0.2703=1.46 atm[/tex]

Partial pressure of propane gas:

[tex]p_3=P\times \chi_3=5.40 atm\times 0.5045=2.72 atm[/tex]

Part B:

Suppose in 100 grams mixture of nitrogen and oxygen gas.

Percentage of nitrogen = 37.8 %

Mass of nitrogen in 100 g mixture = 37.8 g

Mass of oxygen gas = 100 g - 37.8 g = 62.2 g

Moles of nitrogen gas = [tex]n_1=\frac{37.8 g g}{28g/mol}=1.35 mol[/tex]

Moles of oxygen gas  =[tex]n_2=\frac{62.2 g}{32 g/mol}=1.94 mol[/tex]

Mole fraction of nitrogen=[tex]\chi_1=\frac{n_1}{n_1+n_2}[/tex]

[tex]\chi_1=\frac{1.35 mol}{1.35 mol+1.94 mol}=0.4103 [/tex]

Similarly, mole fraction of oxygen

[tex]\chi_2=\frac{n_2}{n_1+n_2}=\frac{1.94 mol}{1.35 mol+1.94 mol}=0.5897[/tex]

Partial pressure of each gas can be calculated by the help of Dalton's' law:

[tex]p_i=P\times \chi_1[/tex]

The total pressure is 405 mmHg.

P = 405 mmHg

Partial pressure of nitrogen gas:

[tex]p_1=P\times \chi_1=405 mmHg\times 0.4103 =166.17 mmHg[/tex]

Partial pressure of oxygen gas:

[tex]p_2=P\times \chi_2=405 mmHg\times 0.5897=238.83 mmHg[/tex]

ACCESS MORE