Answer:
y(0) = 0.25 feet
[tex]y(\frac{1}{4}) = 0.0789 \text{ feet}[/tex]
[tex]y(\frac{1}{2}) =-0.2003 \text{ feet}[/tex]
Step-by-step explanation:
We are given the following information in the question:
The displacement from equilibrium of an oscillating weight suspended by a spring =
[tex]y(t) = \displaystyle\frac{1}{4} \cos(5t)[/tex]
where y is the displacement in feet and t is the time in seconds.
Here, cos is in radians.
1) t = 0
[tex]y(0) = \displaystyle\frac{1}{4} \cos(5(0)) = \frac{1}{4} \cos(0) = \frac{1}{4}(1) = \frac{1}{4}[/tex]
y(0) = 0.25 feet
2) t = [tex]\frac{1}{4}[/tex]
[tex]y(\displaystyle\frac{1}{4}) = \displaystyle\frac{1}{4} \cos(5(\frac{1}{4})) = \frac{1}{4} \cos(1.25) = \frac{1}{4}(0.31532236) =0.07883059[/tex]
[tex]y(\frac{1}{4}) = 0.0789 \text{ feet}[/tex]
3) t = [tex]\frac{1}{2}[/tex]
[tex]y(\displaystyle\frac{1}{2}) = \displaystyle\frac{1}{4} \cos(5(\frac{1}{2})) = \frac{1}{4} \cos(2.5) = \frac{1}{4}(-0.80114362) = -0.200285905[/tex]
[tex]y(\frac{1}{2}) =-0.2003 \text{ feet}[/tex]
The negative sign indicates the opposite direction of displacement.