Answer:
[tex]I_t=4.95\ kg.m^2[/tex]
Explanation:
Given that
L = 3 m
M = 2.4 kg
m=0.7 kg
r= L/2 = 1.5 m
The moment of inertia of rod about it center
[tex]I=\dfrac{ML^2}{12}[/tex]
The moment of inertia of point mass about center of rod
I'= mr² + mr²
So total moment of inertia
[tex]I_t=\dfrac{ML^2}{12}+2mr^2[/tex]
By putting the values
[tex]I_t=\dfrac{ML^2}{12}+2mr^2[/tex]
[tex]I_t=\dfrac{2.4\times 3^2}{12}+2\times 0.7\times 1.5^2[/tex]
[tex]I_t=4.95\ kg.m^2[/tex]