To solve this problem it is necessary to apply the concepts of displacement, speed and acceleration given by classical mechanics.
Our previously given values correspond to,
[tex]\omega =400rpm = 400*\frac{2*pi}{60}= 41.9 rad/s[/tex]
[tex]\theta=200 revs = 200*2*pi= 1257.14 rad[/tex]
By definition we know that angular displacement is defined by,
[tex]\theta = \theta_0 +\omega_0*t+\frac{1}{2}\alpha t^2[/tex]
Here we know that there is no initial deployment so replacing the values we have to,
[tex]1257.14 = 0+41.9*20+0.5*\alpha*20^2[/tex]
Solving for [tex]\alpha[/tex]
[tex]\alpha = 2.0957 rad/s^2[/tex]
From the acceleration description equations we know that,
[tex]\omega_f = \omega_i+\alpha t[/tex]
[tex]\omega_f = 41.9+2.0957*20 = 83.814 rad/s[/tex]
The moment the body reaches the final velocity 0, it will take a period of time and a couple of turns the point at which it stops, then
[tex]\omega_f = \omega_i+\alpha t[/tex]
[tex]0=41.9-2.0957*t[/tex]
[tex]t = \frac{41.9}{2.0957} = 19.99 s[/tex]
The angular displacement will then be given by
[tex]\theta = \omega_0*t-\frac{1}{2}\alpha t[/tex]
[tex]\theta=41.9*19.99-0.5*2.0957*19.992[/tex]
[tex]\theta= 418.86 rad[/tex]