Answer:
Part a)
[tex]\omega = 53.85 rad/s[/tex]
Part b)
[tex]\omega = 24.56 rad/s[/tex]
Part c)
[tex]\alpha = -6.55 \times 10^{-3} rad/s^2[/tex]
Part d)
[tex]\theta = 1.75\times 10^5 Rad[/tex]
Part e)
[tex]L = 6262.2 m[/tex]
Explanation:
Part a)
As we know that speed of the lens is 1.40 m/s
radius of the path is R = 2.60 cm
so angular speed is
[tex]\omega = \frac{v}{R}[/tex]
[tex]\omega = \frac{1.40}{0.026}[/tex]
[tex]\omega = 53.85 rad/s[/tex]
Part b)
radius of the outer path is R = 5.70 cm
so angular speed is
[tex]\omega = \frac{v}{R}[/tex]
[tex]\omega = \frac{1.40}{0.057}[/tex]
[tex]\omega = 24.56 rad/s[/tex]
Part c)
Average angular acceleration is rate of change in angular speed
so it is given as
[tex]\alpha = \frac{\omega_f - \omega_i}{\Delta t}[/tex]
[tex]\alpha = \frac{24.56 - 53.85}{(74 \times 60) + 33}[/tex]
[tex]\alpha = \frac{-29.29}{4473}[/tex]
[tex]\alpha = -6.55 \times 10^{-3} rad/s^2[/tex]
Part d)
For constant angular acceleration the angular displacement is given as
[tex]\theta = \frac{\omega_f + \omega_i}{2}\Delta t[/tex]
[tex]\theta = \frac{53.85 + 24.56}{2}(4473)[/tex]
[tex]\theta = 1.75\times 10^5 Rad[/tex]
Part e)
Total length of the track is given as
[tex]L = vt[/tex]
[tex]L = 1.40 \times 4473[/tex]
[tex]L = 6262.2 m[/tex]