2.88 m/s is the velocity afterward.
Explanation:
By using the law of conservation of momentum
Initial momentum = final momentum
[tex]\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \times \mathrm{v} \text { equation }(1)[/tex]
[tex]\mathrm{m}_{1}=91.5 \mathrm{kg} \text { is the mass of the first player }\mathrm{m}_{2}=63.5 \mathrm{kg}[/tex]
[tex]\mathrm{m}_{2}=63.5 \mathrm{kg} \text { is the mass of the second player }[/tex]
[tex]\mathrm{u}_{1}=2.73 \mathrm{m} / \mathrm{s} \text { is the initial velocity of the first player (choosing east as positive direction) }[/tex]
[tex]\mathrm{u}_{2}=3.09 \mathrm{m} / \mathrm{s} \text { is the initial velocity of the second player }[/tex]
v = is their combined velocity afterwards
Solving equation (1) for v
[tex]V=\frac{m_{1} u_{2}+m_{2} u_{2}}{m_{1}+m_{2}}[/tex]
[tex]\mathrm{V}=\frac{(91.5 \times 2.73)+(63.5 \times 3.09)}{91.5+63.5}[/tex]
[tex]\mathrm{V}=\frac{(249.7+196.2)}{155}[/tex]
[tex]\mathrm{V}=\frac{445.9}{155}[/tex]
V = 2.88 m/s
Therefore the velocity afterward is 2.88 m/s.