Answer:
[tex]t'=1.124s[/tex]
Explanation:
[tex]I_b*a_b=I_a*a_a[/tex]
[tex]a_a=\frac{w_f}{t'}[/tex]
[tex]a_b=\frac{w_f}{t}[/tex]
[tex]I_b*\frac{w_f}{t}=I_a*\frac{w_f}{t'}[/tex]
[tex]I_b*\frac{1}{t}=I_a*\frac{1}{t'}[/tex]
[tex]I=\frac{1}{3}*M*r^2[/tex]
[tex]I_a=\frac{1}{3}*M*r_a^2[/tex]
[tex]I_b=\frac{1}{3}*M*r_b^2[/tex]
[tex]\frac{1}{3}*M*r_b^2*\frac{1}{t}=\frac{1}{3}*M*r_a^2*\frac{1}{t'}[/tex]
[tex]t'=(\frac{r_a}{r_b})^2 *t[/tex]
[tex]t'=(\frac{0.16m}{0.44m})^2*t[/tex]
[tex]t'=\frac{16}{121}*8.5s[/tex]
[tex]t'=1.124s[/tex]