Answer:
0.05086 m
Explanation:
[tex]m_1[/tex] = Mass of block = 0.46 kg
[tex]m_2[/tex] = Mass of Play-doh = 2.9 kg
[tex]u_1[/tex] = Initial Velocity of block = 0 m/s
[tex]u_2[/tex] = Initial Velocity of Play-doh = 0.06 m/s
v = Velocity of combined mass
k = Spring constant = 22.5 N/m
x = Compression of spring
As the linear momentum of the system is conserved
[tex]m_1u_1 + m_2u_2 =(m_1 + m_2)v\\\Rightarrow v=\frac{m_1u_1 + m_2u_2}{m_1 + m_2}\\\Rightarrow v=\frac{0.46\times 0 + 0.06\times 2.9}{0.46 + 0.06}\\\Rightarrow v=0.33461\ m/s[/tex]
The kinetic energy of motion and the spring will balance each other
[tex]\frac{1}{2}(m_1+m_2)v^2=\frac{1}{2}kx^2\\\Rightarrow (m_1+m_2)v^2=kx^2\\\Rightarrow x=\sqrt{\frac{(m_1+m_2)v^2}{k}}\\\Rightarrow x=\sqrt{\frac{(0.46+0.06)\times 0.33461^2}{22.5}}\\\Rightarrow x=0.05086\ m[/tex]
The amount by which the spring gets compresses is 0.05086 m