Respuesta :
Answer:
[tex]m\angle ABC =23[/tex]°
Step-by-step explanation:
Let the measure of [tex]m\angle ABC=x[/tex]
Let the perpendicular bisector of AB meet AB at E as shown in the figure below.
Given:
[tex]m\angle CBD=16[/tex]°, [tex]m\angle ACB=118[/tex]°
Consider the triangles Δ AED and Δ BED
AE ≅ BE (Perpendicular bisector bisects the side equally)
[tex]m\angle AED\cong m\angle BED= 90[/tex]° (Perpendicular bisector bisects the side at right angles)
ED ≅ ED ( Reflexive property)
Therefore, Δ AED ≅ Δ BED by SAS postulate.
Now, by CPCTE,
[tex]m\angle BAC=m\angle ABD\\m\angle BAC=m\angle ABC+m\angle CBD\\m\angle BAC=x+16[/tex]
Now, consider the triangle Δ ABC,
The sum of all its interior angles is equal to 180°. Therefore,
[tex]m\angle BAC + m\angle ABC+m\angle ACB=180\\x+16+x+118=180\\2x+134=180\\2x=180-134\\2x=46\\x=\frac{46}{2}=23[/tex]
Therefore, the measure of [tex]m\angle ABC = x = 23[/tex]°.
![Ver imagen DarcySea](https://us-static.z-dn.net/files/df2/f50fae8c3c08e25deaa53a7b73202514.png)
m \ angle ABC = 23 °
Further Explanation
Let the size of m \ angle ABC = x
Let the perpendicular bisector of AB meet AB on E as shown in the figure below.
Granted:
m \ CBD angle = 16 °, m \ ACB angle = 118 °
Consider the triangles Δ AED and Δ BED
AE ≅ BE (perpendicular bisector bisects the sides equally)
m \ AED angle \ cong m \ BED angle = 90 ° (perpendicular bisector bisects the sides at right angles)
ED ≅ ED (reflexive property)
Therefore, Δ AED ≅ ED BED by SAS postulates.
Now, by CPCTE,
m \ angle BAC = m \ angle ABD
m \ angle BAC = m \ angle ABC m \ angle CBD
m \ angle BAC = x 16
Now, consider the triangle Δ ABC,
The sum of all interior angles is equal to 180 °. Therefore,
m \ BAC angle m \ ABC angle m \ angle ACB = 180
x 16 x 118 = 180
2x 134 = 180
2x = 180-134
2x = 46
x = \ frac {46} {2} = 23
Therefore, the size of m \ angle ABC = x = 23 °.
Learn More
Angles https://brainly.com/question/13890076
Triangle https://brainly.com/question/13890076
Details
Grade: Middle School
Subject: Mathematics
Keyword: angles, triangle, perpendicular