Respuesta :
Answer:
Calculating Coefficient of friction is 0.229.
Force is 4.5 N that keep the block moving at a constant speed.
Explanation:
We know that speed expression is as [tex]\mathrm{V}^{2}=\mathrm{V}_{\mathrm{i}}^{2}+2 . \mathrm{a} . \Delta \mathrm{s}[/tex].
Where, [tex]{V}_{i}[/tex] is initial speed, V is final speed, ∆s displacement and a acceleration.
Given that,
[tex]{V}_{i}[/tex] =3 m/s, V = 0 m/s, and ∆s = 2 m
Substitute the values in the above formula,
[tex]0=3^{2}-2 \times 2 \times a[/tex]
0 = 9 - 4a
4a = 9
[tex]a=2.25 \mathrm{m} / \mathrm{s}^{2}[/tex]
[tex]a=2.25 \mathrm{m} / \mathrm{s}^{2}[/tex] is the acceleration.
Calculating Coefficient of friction:
[tex]\mathrm{F}=\mathrm{m} \times \mathrm{a}[/tex]
[tex]\mathrm{F}=\mu \times \mathrm{m} \times \mathrm{g}[/tex]
Compare the above equation
[tex]\mu \times m \times g=m \times a[/tex]
Cancel "m" common term in both L.H.S and R.H.S
[tex]\text { Equation becomes, } \mu \times g=a[/tex]
[tex]\text { Coefficient of friction } \mu=\frac{a}{g}[/tex]
[tex]\mathrm{g} \text { on earth surface }=9.8 \mathrm{m} / \mathrm{s}^{2}[/tex]
[tex]\mu=\frac{2.25}{9.8}[/tex]
[tex]\mu=0.229[/tex]
Hence coefficient of friction is 0.229.
calculating force:
[tex]\text { We know that } \mathrm{F}=\mathrm{m} \times \mathrm{a}[/tex]
[tex]\mathrm{F}=2 \times 2.25 \quad(\mathrm{m}=2 \mathrm{kg} \text { given })[/tex]
F = 4.5 N
Therefore, the force would be 4.5 N to keep the block moving at a constant speed across the floor.