Respuesta :
Answer:
Height of pole =108 feet
Step-by-step explanation:
Let height of the pole be= AB= [tex]x[/tex] feet
Distance from bottom of the pole to anchor point =BC= [tex]x-63[/tex] feet
Length of wire =AC= [tex]x+9[/tex] feet
Applying Pythagorean theorem.
In the given [tex]\triangle ABC[/tex]
[tex]AC^2=AB^+BC^2[/tex]
Plugging in values of each.
[tex](x+9)^2=x^2+(x-63)^2[/tex]
Expanding the binomials using identities.
[tex]x^2+18x+81=x^2+x^2-126x-3969\\[/tex]
Combining like terms.
[tex]x^2+18x+81=2x^2-126x+3969[/tex]
Subtracting [tex]x^2[/tex] from both sides.
[tex]x^2-x^2+18x+81=2x^2-x^2-126x+3969[/tex]
[tex]18x+81=x^2-126x+3969[/tex]
Subtracting [tex]18x+81[/tex] from both sides.
[tex](18x+81)-18x-81=x^2-126x+3969-18x-81[/tex]
[tex]0=x^2-144x+3888[/tex]
We get the quadratic equation to solve.
[tex]x^2-144x+3888=0[/tex]
Solving quadratic using formula:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Plugging in values.
[tex]x=\frac{-(-144)\pm\sqrt{(-144)^2-4(1)(3888)}}{2(1)}[/tex]
[tex]x=\frac{144\pm\sqrt{20736-15552}}{2}[/tex]
[tex]x=\frac{144\pm\sqrt{5184}}{2}[/tex]
[tex]x=\frac{144\pm72}{2}[/tex]
[tex]x=\frac{144\pm 72}{2}[/tex]
[tex]x=\frac{144+72}{2}[/tex] and [tex]x=\frac{144-72}{2}[/tex]
[tex]x=\frac{216}{2}[/tex] and [tex]x=\frac{72}{2}[/tex]
[tex]x=108[/tex] and [tex]x=36[/tex]
Since distance from pole to anchor point is 63 feet less than the height of pole, thus the height of the pole has to be =108 feet
![Ver imagen jitumahi456](https://us-static.z-dn.net/files/dde/37fdf2561de6ee5ed749cb1a4c13cf1c.png)