Answer:
1.94601 rad/s
Explanation:
[tex]I_1[/tex] = Moment of inertia of carousel = 124 kgm²
[tex]\omega_1[/tex] = Angular speed of carousel = 3.5 rad/s
[tex]\omega_2[/tex] = Angular speed of person
r = Radius of carousel = 1.53 m
m = Mass of person = 42.3 kg
Moment of inertia of person
[tex]I_2=mr^2\\\Rightarrow I_2=42.3\times 1.53^2\\\Rightarrow I_2=99.02007\ kgm^2[/tex]
As the angular momentum is conserved in the system
[tex]I_1\omega_1=(I_1+I_2)\omega_2\\\Rightarrow \omega=\frac{I_1\omega_1}{(I_1+I_2)}\\\Rightarrow \omega_2=\frac{124\times 3.5}{(124+99.02007)}\\\Rightarrow \omega_2=1.94601\ rad/s[/tex]
The angular speed of the carousel after the person climbs aboard is 1.94601 rad/s