Answer:
D ) 30 m/s
Explanation:
This change in frequency observation occur due to doppler effect
[tex]f_(observed)=\frac{V_(wave)+-V_(receiver) }{V_(wave)+-V_(source)} *f_(original)[/tex]
When the police is coming to you , you hear a higher frequency-----------(1)
[tex]f_(observed)=\frac{V_(wave)+V_(receiver) }{V_(wave)-V_(source)} *f_(original)\\1340=\frac{343+35 }{343-V_(police)} *f_(original)[/tex]
when the police is passing you , you hear a lesser frequency---------------(2)
[tex]f_(observed)=\frac{V_(wave)-V_(receiver) }{V_(wave)+V_(source)} *f_(original)\\1300=\frac{343-35 }{343+V_(police)} *f_(original)[/tex]
divide (1)/(2)
[tex]\frac{1340}{1300} =\frac{(343+35)*(343+V)}{(343-35)*(343-V)}\\\frac{1340}{1300} =\frac{378*(343+V)}{308*(343-V)}\\ V=30 m/s[/tex]