Respuesta :
The pair of functions (gof)(a) = |a| - 2 is [tex]${data-answer}amp;f(a)=5+a^{2}, g(a)=\sqrt{a-5}-2 \\[/tex] .
How to solve the pair of functions?
The pair of functions is (gof)(a) = |a| - 2
1. [tex]${data-answer}amp;f(a)=a^{2}-4, g(a)=\sqrt{a} \\[/tex]
[tex]${data-answer}amp;g o f(a)=g\left(a^{2}-4\right) \\[/tex]
[tex]${data-answer}amp;=\sqrt{a^{2}-4} \neq|a|-2[/tex]
2. [tex]${data-answer}amp;f(a)=\frac{1}{2 \cdot a-1}, g(a)=2 \cdot a-2 \\[/tex]
[tex]${data-answer}amp;g \circ f(a)=g\left(\frac{1}{2 \cdot a-1}\right) \\[/tex]
[tex]${data-answer}amp;=\frac{2}{2 \cdot a-1}-2 \\[/tex]
[tex]${data-answer}amp;=\frac{1-2 \cdot a}{2 \cdot a-1} \neq|a|-2[/tex]
3. [tex]${data-answer}amp;f(a)=5+a^{2}, g(a)=\sqrt{a-5}-2 \\[/tex]
[tex]${data-answer}amp;g o f(a)=g\left(5+a^{2}\right) \\[/tex]
[tex]${data-answer}amp;=\sqrt{5+a^{2}-5}-2 \\[/tex]
[tex]${data-answer}amp;=\sqrt{a^{2}}-2 \\[/tex]
[tex]${data-answer}amp;=|a|-2[/tex]
4. [tex]${data-answer}amp;f(a)=3-3 \cdot a, g(a)=4 \cdot a-5 \\[/tex]
[tex]${data-answer}amp;g o f(a)=g(3-3 \cdot a) \\[/tex]
[tex]${data-answer}amp;=4(3-3 \cdot a)-5 \\[/tex]
[tex]${data-answer}amp;=7-12 \cdot a \neq|a|-2[/tex]
The pair of functions (gof)(a) = |a| - 2 is
[tex]${data-answer}amp;f(a)=5+a^{2}, g(a)=\sqrt{a-5}-2 \\[/tex] .
Therefore, the correct answer is option C. [tex]${data-answer}amp;f(a)=5+a^{2}, g(a)=\sqrt{a-5}-2 \\[/tex].
To learn more about the pair of functions
https://brainly.com/question/9170205
#SPJ2