Answer:
The x -coordinate(s) of the point(s) of intersection of these two polynomials are [tex]x=\frac{2}{9}\approx0.2222,\:x=-\frac{1}{3}\approx-0.3333[/tex]
The sum of these x -coordinates is [tex]\frac{2}{9}+\left(-\frac{1}{3}\right)=-\frac{1}{9}[/tex]
Step-by-step explanation:
The intersections of the two polynomials, p(x) and q(x), are the roots of the equation p(x) = q(x).
Thus, [tex]3x + 27x^2=2[/tex] and we solve for x
[tex]3x+27x^2-2=2-2\\27x^2+3x-2=0\\\left(27x^2-6x\right)+\left(9x-2\right)\\3x\left(9x-2\right)+\left(9x-2\right)\\\left(9x-2\right)\left(3x+1\right)=0[/tex]
Using Zero Factor Theorem: = 0 if and only if = 0 or = 0
[tex]9x-2=0\\9x=2\\x=\frac{2}{9}[/tex]
[tex]3x+1=0\\3x=-1\\x=-\frac{1}{3}[/tex]
The solutions are:
[tex]x=\frac{2}{9}\approx0.2222,\:x=-\frac{1}{3}\approx-0.3333[/tex]
The sum of these x -coordinates is
[tex]\frac{2}{9}+\left(-\frac{1}{3}\right)=-\frac{1}{9}[/tex]
We can check our work with the graph of the two polynomials.