Answer:
55.68 μT
[tex]1.19058\times 10^{-8}\ Tm^2[/tex]
0.12 mH
Magnetic flux and magnetic field
Explanation:
i = Current = 40 mA
N = Number of turns = 435
D = Diameter of solenoid = 16.5 mm
l = Length of wire = 12.5 cm
A = Area of solenoid = [tex]\pi \left(\frac{D}{2}\right)^2[/tex]
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]
Magnetic field of a solenoid is given by
[tex]B=\frac{\mu_0Ni}{l}\\\Rightarrow B=\frac{4\times 10^{-7}\times 435\times 4\times 10^{-3}}{12.5\times 10^{-2}}\\\Rightarrow B=0.00005568\ T=55.68\times 10^{-6}\ T=55.68\ \mu T[/tex]
The magnetic field inside the solenoid is 55.68 μT
Magnetic flux is given by
[tex]\phi=BA\\\Rightarrow \phi=0.00005568\times \pi\times \left(\frac{16.5\times 10^{-3}}{2}\right)^2\\\Rightarrow \phi=1.19058\times 10^{-8}\ Tm^2[/tex]
The magnetic flux through each turn is [tex]1.19058\times 10^{-8}\ Tm^2[/tex]
Inductance of solenoid is given by
[tex]L=\frac{N\phi}{i}\\\Rightarrow L=\frac{435\times 1.19058\times 10^{-8}}{40\times 10^{-3}}\\\Rightarrow L=0.00012\ H=0.12\ mH[/tex]
The inductance of the solenoid is 0.12 mH
As can be seen from the formulae above magnetic flux and magnetic field depend on current.