Respuesta :

Answer:

The coordinate of the  vertex of the parabola is (h,k) =  (3,20)

Step-by-step explanation:

The given equation of the parabola is [tex]y=-5x^2+30x-25[/tex]

Now, the General Parabolic Equation is of the form:

[tex]y = a (x-h)^2 + k[/tex], then the vertex is the point (h, k).

Now, to covert the given equation in the standard form:

[tex]y=-5x^2+30x-25   = -5(x^2  -6x   + 5)[/tex]

Using the COMPLETE THE SQUARE METHOD,

[tex]-5(x^2  -6x   + 5)  = -5(x^2  -6x  +  (3)^2 +  5  - (3)^2)\\\implies -5(((x^2  -6x +(3)^2)  + 5 - 9)\\= -5((x-3)^3 -4)\\= -5(x-3)^2 + 20[/tex]

or[tex]y = -5(x-3)^2 + 20[/tex]

⇒The general formed equation of the given parabola is

[tex]y  = -5(x-3)^2 + 20[/tex]

Comparing this with general form, we get

h = 3, k = 20

Hence, the coordinate of the  vertex of the parabola is (h,k) =  (3,20)

ACCESS MORE