Answer:
The coordinate of the vertex of the parabola is (h,k) = (3,20)
Step-by-step explanation:
The given equation of the parabola is [tex]y=-5x^2+30x-25[/tex]
Now, the General Parabolic Equation is of the form:
[tex]y = a (x-h)^2 + k[/tex], then the vertex is the point (h, k).
Now, to covert the given equation in the standard form:
[tex]y=-5x^2+30x-25 = -5(x^2 -6x + 5)[/tex]
Using the COMPLETE THE SQUARE METHOD,
[tex]-5(x^2 -6x + 5) = -5(x^2 -6x + (3)^2 + 5 - (3)^2)\\\implies -5(((x^2 -6x +(3)^2) + 5 - 9)\\= -5((x-3)^3 -4)\\= -5(x-3)^2 + 20[/tex]
or[tex]y = -5(x-3)^2 + 20[/tex]
⇒The general formed equation of the given parabola is
[tex]y = -5(x-3)^2 + 20[/tex]
Comparing this with general form, we get
h = 3, k = 20
Hence, the coordinate of the vertex of the parabola is (h,k) = (3,20)