The molar absorptivities of tryptophan and tyrosine at 240 nm are 2.00 x 103 dm3 mol-1 cm-1 and 1.12 x 104 dm3 mol-1 cm-1. At 280 nm, they are 5.40 x 103 dm3 mol-1 cm-1 and 1.50 x 103 dm3 mol-1 cm-1. A solution of the two has absorbances of 0.660 at 240 nm and 0.221 at 280 nm in a 1.0 cm thick cell. What are the concentrations of these two amino acids in this solution?

Respuesta :

Explanation:

Let us assume that the molar concentrations of tryptophan and tyrosine be x and y respectively.

Mathematically,        A = [tex]\epsilon \times t \times C[/tex]

where,     A = absorbance

             [tex]\epsilon[/tex] = molar absorption coefficient

                t = thickness of the cell

                C = molar concentration

So, first calculate the molar concentration of tryptophan at 240 nm as follows.

            0.66 = [tex]2000 \times 1 \times x + 11200 \times 1 \times y[/tex]

              x = [tex]\frac{0.66 - 11200y}{2000}[/tex]  ........... (1)

At 280 nm,

            0.221 = [tex]5400 \times 1 \times x + 1500 \times 1 \times y[/tex]

            0.221 = [tex]5400x + 1500y[/tex]  ........... (2)

Now, we will substitute the value of x from equation (1) into equation (2) as follows.

         0.221 = [tex]5400 \times \frac{0.66 - 11200y}{2000} + 1500y[/tex]

         0.221 = 1.782 - 30240y + 1500y

         0.221 = 1.782 - 28740y

         28740y = 1.561

            y = [tex]54.3 \times 10^{-6} M[/tex]

or,            = 54.3 [tex]\mu M[/tex] ............ (3)

Hence, the molar concentration of tyrosine is 54.3 [tex]\mu M[/tex] and putting this value into equation (1) we will get the value for concentration of tryptophan as follows.

              x = [tex]\frac{0.66 - 11200 \times 54.3 \times 10^{-6}}{2000}[/tex]

                 = [tex]25.8 \times 10^{-6}[/tex]

or,              = 25.8 [tex]\mu M[/tex]

Therefore, we can conclude that the concentration of tryptophan is 25.8 [tex]\mu M[/tex] and concentration of tyrosine is 54.3 [tex]\mu M[/tex].