Answer: [tex]-3.8\times 10^{5}J[/tex]
Explanation:
[tex]Mn+2Ag^{+}\rightarrow Mn^{2+}+2Ag[/tex]
Here Mn undergoes oxidation by loss of electrons, thus act as anode. silver undergoes reduction by gain of electrons and thus act as cathode.
[tex]E^0=E^0_{cathode}- E^0_{anode}[/tex]
Where both [tex]E^0[/tex] are standard reduction potentials.
[tex]E^0_{[Mn^{2+}/Mn]}= -1.18V[/tex]
[tex]E^0_{[Ag^{2+}/Ag]}=+0.80V[/tex]
[tex]E^0=E^0_{[Ag^{+}/Ag]}- E^0_{[Mn^{2+}/Mn]}[/tex]
[tex]E^0=+0.80- (-1.18V)=1.98V[/tex]
The standard emf of a cell is related to Gibbs free energy by following relation:
[tex]\Delta G^0=-nFE^0[/tex]
[tex]\Delta G^0[/tex] = gibbs free energy
n= no of electrons gained or lost = 2
F= faraday's constant
[tex]E^0[/tex] = standard emf = 1.98V
[tex]\Delta G^0=-2\times 96500\times (1.98)=-3.8\times 10^{5}J[/tex]
Thus the value of [tex]\Delta G^0[/tex] is [tex]-3.8\times 10^{5}J[/tex]