Answer: The [tex]\Delta G^o[/tex] for the given reaction is [tex]-7.84\times 10^4J[/tex]
Explanation:
For the given chemical reaction:
[tex]2ClO_2^-(aq.)+Cl_2(g)\rightarrow 2ClO_2(g)+2Cl^-(aq.)[/tex]
Half reactions for the given cell follows:
Oxidation half reaction: [tex]ClO_2^-\rightarrow ClO_2+e^-;E^o_{ClO_2^-/ClO_2}=0.954V[/tex] ( × 2)
Reduction half reaction: [tex]Cl_2+2e^-\rightarrow 2Cl(g);E^o_{Cl_2/2Cl^-}=1.36V[/tex]
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=1.36-(0.954)=0.406V[/tex]
To calculate standard Gibbs free energy, we use the equation:
[tex]\Delta G^o=-nFE^o_{cell}[/tex]
Where,
n = number of electrons transferred = 2
F = Faradays constant = 96500 C
[tex]E^o_{cell}[/tex] = standard cell potential = 0.406 V
Putting values in above equation, we get:
[tex]\Delta G^o=-2\times 96500\times 0.406=-78358J=-7.84\times 10^4J[/tex]
Hence, the [tex]\Delta G^o[/tex] for the given reaction is [tex]-7.84\times 10^4J[/tex]