Determine the free energy(ΔG) from the standard cell potential (Ecell0 ) for the reaction:2ClO2-(aq)+Cl2(g)→2ClO2(g)+ 2Cl-(aq)where:ClO2+e-→ClO2-Ered0 =+0.954 V.Cl2+2e-→2Cl-Ered0 =+1.36 V.a. ΔG=+79 kJb. ΔG=-790 kJc. ΔG=-79 kJd. ΔG=-0.79 kJ

Respuesta :

Answer: The [tex]\Delta G^o[/tex] for the given reaction is [tex]-7.84\times 10^4J[/tex]

Explanation:

For the given chemical reaction:

[tex]2ClO_2^-(aq.)+Cl_2(g)\rightarrow 2ClO_2(g)+2Cl^-(aq.)[/tex]

Half reactions for the given cell follows:

Oxidation half reaction: [tex]ClO_2^-\rightarrow ClO_2+e^-;E^o_{ClO_2^-/ClO_2}=0.954V[/tex]  ( × 2)

Reduction half reaction: [tex]Cl_2+2e^-\rightarrow 2Cl(g);E^o_{Cl_2/2Cl^-}=1.36V[/tex]

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=1.36-(0.954)=0.406V[/tex]

To calculate standard Gibbs free energy, we use the equation:

[tex]\Delta G^o=-nFE^o_{cell}[/tex]

Where,

n = number of electrons transferred = 2

F = Faradays constant = 96500 C

[tex]E^o_{cell}[/tex] = standard cell potential = 0.406 V

Putting values in above equation, we get:

[tex]\Delta G^o=-2\times 96500\times 0.406=-78358J=-7.84\times 10^4J[/tex]

Hence, the [tex]\Delta G^o[/tex] for the given reaction is [tex]-7.84\times 10^4J[/tex]

ACCESS MORE