Respuesta :
Answer:
For a: The partial pressure of oxygen gas at equilibrium is [tex]4.0\times 10^{-88}atm[/tex]
For b: The reaction must proceed in the forward direction to reach equilibrium.
For c: The value of [tex]K_c[/tex] is [tex]6.12\times 10^{88}[/tex]
Explanation:
For the given chemical equation:
[tex]4Fe_3O_4(s)+O_2(g)\rightleftharpoons 6Fe_2O_3(s)[/tex]
- For a:
In the expression of [tex]K_p[/tex], the partial pressures of solids and liquids are taken as 1.
The expression of [tex]K_p[/tex] for above equation follows:
[tex]K_p=\frac{1}{p_{O_2}}[/tex]
We are given:
[tex]K_p=2.5\times 10^{87}[/tex]
Putting values in above equation, we get:
[tex]2.5\times 10^{87}=\frac{1}{p_{O_2}}\\\\p_{O_2}=\frac{1}{2.5\times 10^{87}}=4.0\times 10^{-88}atm[/tex]
Hence, the partial pressure of oxygen gas at equilibrium is [tex]4.0\times 10^{-88}atm[/tex]
- For b:
[tex]K_p[/tex] is the constant of a certain reaction at equilibrium while [tex]Q_p[/tex] is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of [tex]Q_p[/tex] for above equation follows:
[tex]Q_p=\frac{1}{p_{O_2}}[/tex]
We are given:
[tex]p_{O_2}=0.21[/tex]
Putting values in above equation, we get:
[tex]Q_p=\frac{1}{0.21}=4.76[/tex]
There are 3 conditions:
- When [tex]K_{p}>Q_p[/tex]; the reaction is product favored.
- When [tex]K_{p}<Q_p[/tex]; the reaction is reactant favored.
- When [tex]K_{p}=Q_p[/tex]; the reaction is in equilibrium.
As, [tex]K_p>Q_p[/tex], the reaction will be favoring product side.
Hence, the reaction must proceed in the forward direction to reach equilibrium.
- For c:
Relation of [tex]K_p[/tex] with [tex]K_c[/tex] is given by the formula:
[tex]K_p=K_c(RT)^{\Delta ng}[/tex]
Where,
[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = [tex]2.5\times 10^{87}[/tex]
[tex]K_c[/tex] = equilibrium constant in terms of concentration = ?
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature = 298 K
[tex]\Delta ng[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=0-1=-1[/tex]
Putting values in above equation, we get:
[tex]2.5\times 10^{87}=K_c\times (0.0821\times 298)^{-1}\\\\K_c=6.12\times 10^{88}[/tex]
Hence, the value of [tex]K_c[/tex] is [tex]6.12\times 10^{88}[/tex]
The partial pressure of oxygen at equilibrium is [tex]\rm 4.0\;\times\;10^{-88}\;atm[/tex]. With the partial pressure of oxygen in the air at 0.21 atm, the reaction process in forwarding direction, and the value of [tex]K_c=6.12\;\times\;10^{88}[/tex].
What is the relation between equilibrium constant and pressure?
- The equilibrium constant for the partial pressure of the gas is given as [tex]K_p[/tex]. The equilibrium constant for the reaction gives the pressure of oxygen at equilibrium as:
[tex]K_p=\dfrac{1}{P_{\rm O_2}}[/tex]
The equilibrium constant for the given reaction is [tex]K_P=2.5\;\times\;10^{87}[/tex]
Substituting the values for the partial pressure of oxygen:
[tex]2.5\;\times\;10^{87}=\dfrac{1}{P{\text O_2}} \\\\P_{\text O_2}=\dfrac{1}{2.5\;\times\;10^{87}}\\\\ P_{\text O_2}=4.0\;\times\;10^{-88}\;\rm atm[/tex]
The partial pressure of oxygen at equilibrium is [tex]\rm 4.0\;\times\;10^{-88}\;atm[/tex].
- The oxygen in the air has a partial pressure of 0.21 atm. Thus, the air has high concentration of oxygen. The increased concentration of oxygen results in the reaction to process in the forward direction.
- The equilibrium constant for the reaction at 298 K is:
[tex]K_p=K_c(RT)^{\Delta n}[/tex]
Where the equilibrium constant for the given reaction is [tex]K_P=2.5\;\times\;10^{87}[/tex]
The gas constant for the reaction is, [tex]R=0.0821\;\rm L.atm/mol.K[/tex]
The temperature of the reaction is, [tex]T=298\;\rm K[/tex]
The change in moles of gas particles,
[tex]\Delta n= \text {products - reatants of gas molecules}\\\Delta n=0-1\\\Delta n=-1[/tex]
Substituting the values for determining [tex]K_c[/tex]:
[tex]2.5\;\times\;10^{87}=K_c(0.0821\;\times\;298)^{-1}\\\\K_c=\dfrac{2.5\;\times\;10^{87}}{(0.0821\;\times\;298)^{-1}} \\\\K_c=6.12\;\times\;10^{88}[/tex]
The value of the equilibrium constant for the reaction at 298 K is [tex]K_c=6.12\;\times\;10^{88}[/tex].
Learn more about the equilibrium constant, here:
https://brainly.com/question/17960050