Answer:
Part a)
[tex]\tau_1 = 435.5 Nm[/tex]
Part b)
[tex]\tau_2 = 0[/tex]
Part c)
[tex]\tau_3 = 237.2 Nm[/tex]
Part d)
[tex]\tau_x = 0[/tex]
Part e)
[tex]\tau_y = 0[/tex]
Part f)
[tex]\tau_z = 198.3 Nm[/tex]
Part g)
[tex]\alpha = 26.4 rad/s^2[/tex]
Part h)
[tex]KE = 5892.8 J[/tex]
Explanation:
Part a)
Torque due to F1 force is given as
[tex]\tau = r \times F[/tex]
[tex]\tau_1 = 1.3 \times 335[/tex]
[tex]\tau_1 = 435.5 Nm[/tex]
Part b)
Torque due to F2 force is given as
[tex]\tau = rF sin\theta[/tex]
[tex]\tau_2 = 1.3(335)sin0[/tex]
[tex]\tau_2 = 0[/tex]
Part c)
Torque due to F3 force is given as
[tex]\tau = rFsin\theta[/tex]
[tex]\tau_3 = 1.3(335)(sin33)[/tex]
[tex]\tau_3 = 237.2 Nm[/tex]
Part d)
Net torque along x direction is given as
[tex]\tau_x = 0[/tex]
Part e)
Net torque along y direction is given as
[tex]\tau_y = 0[/tex]
Part f)
Net torque along x direction is given as
[tex]\tau_z = 435.5 - 237.2[/tex]
[tex]\tau_z = 198.3 Nm[/tex]
Part g)
angular acceleration is given as
[tex]\tau = I \alpha[/tex]
[tex]I = \frac{1}{2}mR^2[/tex]
[tex]I = \frac{1}{2}(8.88)(1.3)^2[/tex]
[tex]I = 7.5 kg m^2[/tex]
now we have
[tex]198.3 = 7.5 \alpha[/tex]
[tex]\alpha = 26.4 rad/s^2[/tex]
Part h)
angular speed of the disc after 1.5 s
[tex]\omega = \alpha t[/tex]
[tex]\omega = 26.4 \times 1.5[/tex]
[tex]\omega = 39.6 rad/s[/tex]
now rotational kinetic energy is given as
[tex]KE = \frac{1}{2}I\omega^2[/tex]
[tex]KE = \frac{1}{2}(7.5)(39.6)^2[/tex]
[tex]KE = 5892.8 J[/tex]