Respuesta :

Answer:

The value of SecФ is  [tex]\pm \sqrt{\frac{11}{8}}[/tex] .

Step-by-step explanation:

Given as for trigonometric function :

tan²Ф = [tex]\frac{3}{8}[/tex]

Or, tanФ = [tex]\sqrt{\frac{3}{8} }[/tex]

∵ tanФ = [tex]\frac{Perpendicular}{Base}[/tex]

So,  [tex]\frac{Perpendicular}{Base}[/tex] =  [tex]\sqrt{\frac{3}{8} }[/tex]

So, Hypotenuse² = perpendicular² + base²

or, Hypotenuse² = ( [tex]\sqrt{3}[/tex] )² + ( [tex]\sqrt{8}[/tex] )²

Or,  Hypotenuse² = 3 + 8 = 11

Or,  Hypotenuse = ( [tex]\sqrt{11}[/tex] )

Now SecФ = [tex]\frac{Hypotenuse}{Base}[/tex]

or, SecФ = [tex]\frac{\sqrt{11}}{\sqrt{8}}[/tex] = [tex]\sqrt{\frac{11}{8} }[/tex]

Second Method

Sec²Ф - tan²Ф = 1

Or, Sec²Ф = 1 +  tan²Ф

or, Sec²Ф = 1 +  [tex]\frac{3}{8}[/tex]

Or, Sec²Ф = [tex]\frac{11}{8}[/tex]

Or,  SecФ = [tex]\pm \sqrt{\frac{11}{8}}[/tex]

Hence The value of SecФ is  [tex]\pm \sqrt{\frac{11}{8}}[/tex] . Answer

Answer:

b

Step-by-step explanation: