To solve the problem it is necessary to take into account the concepts related to Kinetic Energy, Gravitational Force and Centripetal Force
For the given case the energy, we apply conservation of it, in which the kinetic energy is equal to the gravitational energy, that is to say
Centripetal Force = Gravitational Force
[tex]\frac{mv^2}{r}= \frac{GMm}{r}[/tex]
Re-arrange for v,
[tex]v=\sqrt{\frac{GM}{r}}[/tex]
Where,
G= Gravitational Coefficient
r= Radius of Satellite
M = Mass of earth
V = Velocity
[tex]v=\sqrt{\frac{2GM}{r}}[/tex]
[tex]v=\sqrt{\frac{(6.67 x 10^-11)(5.98 x 10^24)}{(6370+770)*1000}}[/tex]
[tex]v = 7474.19m/s[/tex]
Puesto que la velocidad relativa es dos veces -se mueve con la misma magnitud pero en sentido contrario- entonces,
[tex]v_p = 2v_s[/tex]
[tex]v_p = 2*10570.1 = 14948.38m/s[/tex]
[tex]KE_{pellet} = \frac{1}{2}mv^2[/tex]
[tex]KE_{pellet} = \frac{1}{2}(6.4*10^{-3})*14948.38^2[/tex]
[tex]KE_{pellet}= 715053.9J[/tex]
PART B) Once the speed is obtained, it is possible to compare the kinetic energies between the bullet and the satellite, like this:
[tex]KE_b = \frac{1}{2}mv^2[/tex]
[tex]KE_b = \frac{1}{2}(6.4*10^{-3})(550)^2[/tex]
[tex]KE_b = 968J[/tex]
In this way the ratio is:
[tex]\frac{KE_s}{KE_b} = \frac{715053.9}{968}[/tex]
[tex]\frac{KE_s}{KE_b} = 738.7:1[/tex]
Therefore the ratio of this kinetic energy to the kinetic energy of a 6.4 g bullet from a modern army rifle with a muzzle speed of 1100 m/s is 739 to 1.