Respuesta :
Explanation:
A) Pressure at which HPLC procedure is running = P = [tex]2.04\times 10^8 Pa[/tex]
1 Torr = 133.322 Pascal
[tex]P=2.04\times 10^8 Pa=\frac{2.04\times 10^8 }{133.322 } Torr=1,530.13 Torr[/tex]
The running pressure in Torr is 1,530.13.
B)Initial temperature if the gas in balloon = [tex]T_1=37^oC=310.15 K[/tex]
Initial volume of the gas in the balloon = [tex]V_1=1.12\times 10^3 L[/tex]
Final temperature if the gas in balloon = [tex]T_2=58^oC=331.15 K[/tex]
Final volume of the gas in the balloon = [tex]V_2=?[/tex]
Using Charles law:
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex] (constant pressure)
[tex]V_2=\frac{V_1\times T_2}{T_1}=\frac{1.12\times 10^3 L\times 331.15 K}{310.15 K}=1.196\times 10^3 L[/tex]
[tex]1.196\times 10^3 L[/tex] is the new volume of the gas.
C) Initial temperature if the gas in balloon = [tex]T_1=20^oC=293.15 K[/tex]
Initial volume of the gas in the balloon = [tex]V_1=5.00 L[/tex]
Initial pressure of the gas in the balloon = [tex]P_1=760 mmHg[/tex]
Final temperature if the gas in balloon = [tex]T_2=-50^oC=223.15 K[/tex]
Final volume of the gas in the balloon = [tex]V_2=?[/tex]
Final pressure of the gas in the balloon = [tex]P_2=76 mmHg[/tex]
Using combine gas law:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
[tex]V_2=\frac{P_1V_1\times T_2}{T_1\times P_2}[/tex]
[tex]=\frac{760 mmHg\times 5.00 L\times 23.15 K}{293.15 K\times 76 mmHg}[/tex]
[tex]V_2=38.06 L[/tex]
38.06 liters is the new volume of the balloon.
D) Initial temperature if the gas in container= [tex]T_1=20^oC=293.15 K[/tex]
Initial volume of the gas in the container = [tex]V_1=4.60 L[/tex]
Initial pressure of the gas in the container= [tex]P_1=365 mmHg[/tex]
Final temperature if the gas in container= [tex]T_2=30^oC=303.15 K[/tex]
Final volume of the gas in the container= [tex]V_2=2.40 L[/tex]
Final pressure of the gas in the container= [tex]P_2=?[/tex]
Using combine gas law:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
[tex]P_2=\frac{P_1V_1\times T_2}{T_1\times V_2}[/tex]
[tex]=\frac{365 mmHg\times 4.60 L\times 303.15 K}{293.15 K\times 2.4 L}[/tex]
[tex]P_2=723.45 mmHg[/tex]
723.45 mmHg is the new pressure inside the container.