Respuesta :
Answer:
The confidence interval estimate of the population mean = (4139.28,4545.56)
Step-by-step explanation:
We are given the following data set:
4041, 3894, 3865, 4037, 4316, 4803, 4660, 4027, 5000, 4821, 4334, 4311
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{52109}{12} = 4342.42[/tex]
Sum of squares of differences = 90852.00696 + 201077.507 + 227926.6736 + 93279.3403 + 697.840278 + 212137.0069 + 100859.1736, +99487.67363 + 432415.8402 + 229042.0069 + 70.84027778 + 987.0069447 = 1688832.917
[tex]S.D = \sqrt{\frac{1688832.917}{11}} = 391.83[/tex]
Confidence interval:
[tex]\bar{x} \pm t_{critical}\frac{\sigma}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 11 and at}~\alpha_{0.10} = \pm 1.795885[/tex]
[tex]4342.42 \pm 1.795885(\frac{391.83}{\sqrt{12}} ) = 4342.42 \pm 203.14 = (4139.28,4545.56)[/tex]