Respuesta :
Answer:
The moles of dinitrogen tetroxide after equilibrium is reached the second time is 18.78 moles.
Explanation:
[tex]2NO_2\rightleftharpoons N_2O_4[/tex]
Initially 35.0 mol
Eq'm 8.0 mol 13.5 mol
Moles of nitrogen dioxide = 35.0 mol
Moles of nitrogen dioxide at equilibrium = 8.0 mol
According to reaction, 2 moles nitrogen oxide gives 1 mol of dinitrogen tetraoxide. Then 27 mol of nitrogen dioxde will give:
[tex]\frac{1}{2}\times 27 mol=13.5 mol[/tex]
Moles of dinitrogen tetroxide = 13.5 mol
Concentration of nitrogen dioxide at equilibrium,[tex][NO_2] =\frac{8.0 mol}{125.0 L}[/tex]
Concentration of dinitrogen tetradioxide at equilibrium,[tex][N_2O_4] =\frac{13.5 mol}{125.0 L}[/tex]
Equilibrium constant of reaction:
[tex]K_c=\frac{[N_2O_4]}{[NO_2]^2}[/tex]
[tex]K_c=\frac{\frac{13.5 mol}{125.0 L}}{(\frac{8.0 mol}{125.0 L})^2}=26.37[/tex]
Now, adds another 12.0 moles of nitrogen dioxide.
[tex]2NO_2\rightleftharpoons N_2O_4[/tex]
Initially 35.0 mol
Eq'm 8.0 mol 13.5 mol
After adding 12 moles of nitrogen dioxide the moles
(8.0 mol+12 mol)
Again after attaining equilibrium second time:
(20.0 -x)mol (13.5+x/2) mol
Concentration of nitrogen dioxide at second equilibrium,[tex][NO_2] =\frac{(20.0 -x)mol}{125.0 L}[/tex]
Concentration of dinitrogen tetradioxide at second equilibrium,[tex][N_2O_4] =\frac{(13.5 +x/2)mol}{125.0 L}[/tex]
[tex]K_c=\frac{\frac{(13.5+x/2)}{125 L}}{(\frac{(20.0 mol -x)}{125 L})^2}[/tex]
[tex]26.37=\frac{(13.5+x/2)\times 125}{(20.0-x)^2}[/tex]
on solving for x:
we get x = 10.56
Moles of dinitrogen tetroxide after equilibrium is reached the second time:
[tex](13.5 + \frac{x}{2})mol = 13.5 + (\frac{10.56}{2}) mol= 18.78 mol[/tex]
The moles of dinitrogen tetroxide after equilibrium reached the second time is 18.78 moles.
What is dinitrogen tetroxide?
[tex]\rm N_2O_3[/tex] is a chemical compound used in the synthesis of chemicals.
The reaction is:
[tex]\rm 2NO_2 <--> N_2O_4[/tex]
Now, the initial moles are
35. mol of nitrogen dioxide gas
At equilibrium, = 8.0mol of nitrogen dioxide gas.
2 moles nitrogen oxide gives 1 mol of dinitrogen tetra oxide.
Then 27 mol of nitrogen dioxide will give:
[tex]\dfrac{1}{2} \times 27 = 13.5mol[/tex]
Mass of dinitrogen tetroxide = 13.5 mol
Concentration of nitrogen dioxide at equilibrium = [tex]\dfrac{8.0 \;mol}{125\;L}[/tex]
Concentration of dinitrogen tetra dioxide at equilibrium = [tex]\dfrac{13.5\;mol}{125\;mol}[/tex]
Equilibrium constant of reaction
[tex]Kc = \dfrac{N_2O_4}{[NO_2]^2}\\\\\\Kc=\dfrac{\dfrac{13.5\;mol}{125\;mol}}{[\dfrac{8.0 \;mol}{125\;L}]^2} = 26.37[/tex]
Add 12.0 mol to the equilibrium value 8.0 mol
(8.0 mo l+ 12 mol)
Initially 35.0 mol
At equilibrium 8.0 mol 13.5 mol
Attaining equilibrium second time
[tex](20.0 -x)mol \;\;\;\;\; (13.5+\dfrac{x}{2}) mol[/tex]
Concentration of nitrogen dioxide at second equilibrium = [tex]\rm NO_2 = \dfrac{(20.0-x)mol}{125.o\;L}[/tex]
Concentration of dinitrogen tetra dioxide at second equilibrium =
[tex]\rm N_2O_4 = \dfrac{ (13.5+\dfrac{x}{2}) mol}{125.o\;L}\\\\[/tex]
Now the value of Kc is
[tex]26.37 =\dfrac{\rm \dfrac{ (13.5+\dfrac{x}{2}) mol}{125.o\;L}\\\\}{\rm \dfrac{(20.0-x)mol}{125.o\;L}]^2} = 10.56[/tex]
we get x = 10.56
Moles of dinitrogen tetroxide after equilibrium is reached the second time
[tex](13.5+\dfrac{x}{2}) mol = (13.5+\dfrac{10.05}{2}) mol= 18.78\;mol[/tex]
Thus, the value of dinitrogen tetroxide after equilibrium reached the second time is 18.78 mol.
Learn more about dinitrogen tetroxide here:
https://brainly.com/question/24675919