Respuesta :
Explanation:
It is given that 1.26 g of [tex]C_{2}(NO_{2})_{6}(s)[/tex] is placed in a [tex]200.0 cm^{3}[/tex] vessel.
The balanced equation for the given reaction will be as follows.
[tex]C_{2}(NO_{2})_{6}(s) \rightarrow 2NO_{2}(g) + 4NO(g) + 2CO_{2}(g)[/tex], \Delta H_{rxn}[/tex] = -455.66 kJ
Now, [tex]dH_{rxn}[/tex] for 1.26g [tex]C_{2}(NO_{2})_{6}[/tex] will be as follows.
[tex]dH_{rxn} = 1.26g C_{2}(NO_2)_6 \times (\frac{1 mol C_2(NO_2)_6}{300.08g} C_2(NO_2)_6) \times -451.1 kJ/mol C_2(NO_2)_6)[/tex]
= -1.895 kJ
Now, we will calculate the moles of [tex]CO_2[/tex], NO and [/tex]NO_2[/tex] formed as follows.
- Moles of [tex]NO_{2} = 1.26g C_2(NO_2)_6 \times (\frac{1 mol C_2(NO_2)_6}{300.08g C_2(NO_2)_6)} \times (\frac{2 mol NO_{2}}{1 mol C_2(NO_2)_6)}[/tex]
= 0.008398 mol [tex]NO_2[/tex]
- Moles of NO = [tex]1.26 g C_2(NO_2)_6 \times (\frac{1 mol C_2(NO_2)_6}{300.08 g C_2(NO_2)_6}) \times (\frac{4 mol NO}{1 mol C_2(NO_2)_6})[/tex]
= 0.01680 mol NO
- Moles [tex]CO_{2} = 1.26 g C_2(NO_2)_6 \times (\frac{1 mol C_2(NO_2)_6}{ 300.08 g C_2(NO_2)_6}) \times (\frac{2 mol CO_2}{1 mol C_2(NO_2)_6})[/tex]
= 0.008398 mol [tex]CO_2[/tex]
According to energy balance, we assume the same final temperature, assuming we heat the mix to [tex]140^{o}C[/tex] to make the reaction occur.
Then, calculate heat as follows.
Heat = [tex](m \times C_v \times (T_{f} - 140^{o}C) CO_{2} + (m \times C_{v} \times (T_{f} - 140^{o}C) NO + (m \times C_{v} \times (T_{f} - 140^{o}C) NO_2[/tex]
1895 J = [tex](0.008398 mol NO_2 \times 29.5 J/mol^{o}C \times (T_{f} - 140^{o}C)) + (0.01680 mol NO \times 21.5 J/mol^{o}C \times (T_{f} - 140^{o}C)) + (0.008398 mol CO_{2} \times 28.5 J/mol^{o}C \times (T_{f} - 140^{o}C))[/tex]
1895 = [tex]0.2477 \times (T_{f} - 140) + 0.3611 \times (T_{f} - 140) + 0.2393 \times (T_{f} - 140)[/tex]
On rearranging the above equation we will calculate the final temperature as follows.
[tex]T_{f} = (\frac{1895}{(0.2477 + 0.3611 + 0.2393)}) + 140[/tex]
= [tex]2374^{o}C[/tex]
= 2647 K
According to the ideal gas equation, PV = nRT.
So, calculate the pressure as follows.
P = [tex]\frac{nRT}{V}[/tex]
= [tex](0.008398 + 0.01680 + 0.008398) \times (0.08206 L atm/mol K) \times \frac {2647 K}{0.2000 L}[/tex]
= 36.5 atm
Thus, we can conclude that the pressure of the mixture of gases after detonation is 36.5 atm.