Answer:
a. Her moment of inertia increases and she rotates slower.
Explanation:
As we know that initially when she starts her motion she is in piked position due to which her whole mass is concentrated near the axis of rotation
So here the rotational Inertia of her body will be smaller
Now when is comes closer to the position of landing she extends into layout position due to which her mass will move away from the axis of rotation
Due to this the rotational inertia of her body will increase
now we know that there is no external torque on the system
so here angular momentum must be conserved
So we will have
[tex]I\omega = constant[/tex]
so if rotational inertia is increasing then angular speed must be slower
so correct answer will be
a. Her moment of inertia increases and she rotates slower.