Respuesta :

Answer:

The distance between line 6 x - y = - 3 and point (6,2) is[tex]\sqrt{37}[/tex]

Step-by-step explanation:

Given equation of line as :

6 x - y = - 3

And The points be ( 6 , 2 )

Let The distance between line and points = d

So , from point to line distance formula

d = [tex]\frac{\begin{vmatrix}ax & + by & + c\end{vmatrix}}{\sqrt{a^{2}+b^{2}}}[/tex]

Or, d = [tex]\frac{\begin{vmatrix}6x & - y & + 3\end{vmatrix}}{\sqrt{6^{2}+(-1)^{2}}}[/tex]

∵ points is ( 6 , 2 )

so, d = [tex]\frac{\begin{vmatrix}6\times 6 & + (-1)\times 2 & + 2\end{vmatrix}}{\sqrt{6^{2}+(-1)^{2}}}[/tex]

or, d = [tex]\frac{36-2+3}{\sqrt{37} }[/tex]

∴   d = [tex]\frac{37}{\sqrt{37} }[/tex]

I.e d = [tex]\sqrt{37}[/tex]

Hence The distance between line 6 x - y = - 3 and point (6,2) is[tex]\sqrt{37}[/tex]   Answer

Answer:

Attached

Step-by-step explanation:

Ver imagen twinklecases
ACCESS MORE