Respuesta :

Answer:

Volume of right square prism = [tex]24\ units^3[/tex]

Step-by-step explanation:

Surface area of right square prism = [tex]50\ units^2[/tex]

Area of square base = [tex]9\ units^2[/tex]

Area of square base is given by = [tex]a^2[/tex]

where [tex]a[/tex] represents the square base edge.

So,  [tex]a^2=9[/tex]

Taking square root both sides.

[tex]\sqrt a^2=\sqrt 9[/tex]

[tex]a=3[/tex]    [ignoring the -3 as we are finding lengths which is always positive]

Surface area of right square prism is given by =[tex]2a^2+4ah[/tex]

where [tex]a[/tex] represents the square base edge and [tex]h[/tex] represents height of the prism.

So we have,

[tex]2a^2+4ah=50[/tex]

Plugging in values [tex]a=3\ units[/tex] and surface area=[tex]50\ units^2[/tex]

[tex]2(3)^2+4(3)h=50[/tex]

[tex]2(9)+12h=50[/tex]

[tex]18+12h=50[/tex]

Subtracting both sides by 18.

[tex]18+12h-18=50-18[/tex]

[tex]12h=32[/tex]

dividing both sides by 12.

[tex]\frac{12h}{12}=\frac{32}{12}\\\\h=\frac{32}{12}\ units[/tex]

Volume of prism = [tex]a^2h[/tex]

where [tex]a[/tex] represents the square base edge and [tex]h[/tex] represents height of the prism.

Plugging in values [tex]a=3\ units[/tex] and [tex]h=\frac{32}{12}\ units[/tex]

[tex]V=(3)^2\times(\frac{32}{12})\\V=9\times\frac{32}{12}\\\\V=24\ units^3[/tex]

ACCESS MORE