An apparatus consists of a 4 L flask containing nitrogen gas at 27◦C and 875 kPa, joined by a valve to a 13 L flask containing argon gas at 27◦C and 54.9 kPa. The valve is opened and the gases mix. What is the partial pressure of nitrogen after mixing? Answer in units of kPa.

Respuesta :

Explanation:

Given data is as follows.

      [tex]V_{1}[/tex] = 4 L,        [tex]P_{1}[/tex] = 875 kPa

     [tex]T_{1} = 27^{o}C[/tex] = (27 + 273) K = 300 K,      [tex]V_{2}[/tex] = 13 L

     [tex]P_{2}[/tex] = 54.9 kPa,       [tex]T_{2} = 27^{o}C[/tex]

Total volume will be 4 L + 13 L = 17 L

Hence, calculate the total pressure as follows.

                    [tex]P_{1}V_{1} = P_{total}V_{total}[/tex]     (as T is same so it will cancel out)

                    [tex]875 kPa \times 4 L = P_{total} \times 17 L[/tex]

                    [tex]P_{total}[/tex] = 205.8 kPa

Now, using ideal gas equation we will calculate the moles of nitrogen as follows.

               PV = nRT

  [tex]875 kPa \times 4 L = n \times 8.314 L kPa/mol K \times 300 K[/tex]

     3500 = [tex]n \times 2494.2[/tex]

          n = 1.4 mol

Moles of argon will be calculated as follows.

             PV = nRT

 [tex]54.9 \times 13 L = n \times 8.314 L kPa/mol K \times 300 K[/tex]

        713.7 = [tex]n \times 2494.2[/tex]

           n = 0.28 mol

Therefore, mole fraction of nitrogen will be as follows.

       Mole fraction of [tex]N_{2} = \frac{moles of N_{2}}{\text{total moles}}[/tex]

                                       = [tex]\frac{1.4 mol}{1.4 + 0.28}[/tex]

                                       = [tex]\frac{1.4}{1.68}[/tex]

                                       = 0.833

Relation between partial pressure and total pressure is as follows.

                 [tex]P_{total} = P_{i}x_{i}[/tex]

where,   [tex]P_{i}[/tex] = partial pressure of a gas

             [tex]x_{i}[/tex] = mole fraction of the gas

Thus, we will calculate the partial pressure of nitrogen after mixing as follows.

          [tex]P_{total} = P_{i}x_{i}[/tex]  

            205.8 kPa = [tex]P_{i} \times 0.833[/tex]

              [tex]P_{i} = 247.05 kPa[/tex]

Thus, we can conclude that the partial pressure of nitrogen after mixing is 247.05 kPa.

ACCESS MORE