Answer:
d=1.07m
Explanation:
Calculate Initial Kinetic Energy:
KE = 1/2*m*v^2
KE= 0.5*(10.3kg)*(1.64m/s)^2 = 13.85J
Calculate work overcoming friction:
W = F*d = mu*m*g*d
W = (0.128)*(10.3kg)*9.80m/s^2)*d
W = 12.92*d
Equate the two since all of the kinetic energy is used up in working against friction:
W = KE
12.92d = 13.851J
Solve for d:
d= (13.851J)/(12.92) = 1.07 m