Answer:
[tex]v_f=2.15x10^{-4}m/s[/tex]
Explanation:
Given:
[tex]m=1305g*\frac{1kg}{1000g}=1.305kg[/tex]
[tex]K=8.8N/m[/tex]
[tex]L=17cm*\frac{1m}{100cm}=0.17m[/tex]
[tex]x_i=6.0cm*\frac{1m}{100cm}[/tex]
ΔE=Wf
[tex]E_f-E_i=W_f[/tex]
[tex]\frac{1}{2}*m*v^2-\frac{1}{2}*K*x_i^2=-2*F_k*L[/tex]
[tex]m*v_f^2=-2*F*L+K*x_i^2[/tex]
Solve to vf'
[tex]v_f=\sqrt{\frac{-2*F_k*L+K*x_i}{m}}[/tex]
[tex]v_f=\sqrt{\frac{-2*0.026N*0.17m8.8N/m*(0.06m)^2}{1.305kg}}[/tex]
[tex]v_f=2.15x10^{-4}m/s[/tex]