Explanation:
Energy of the electron in the ground state, [tex]E_o=2\ eV=2\times 1.6\times 10^{-19}\ J=3.2\times 10^{-19}\ J[/tex]
(a) The energy of the electron is square well is given by :
[tex]E=\dfrac{n^2h^2}{8ml}[/tex]
Where
l is the width of the box
[tex]E_o=\dfrac{n^2h^2}{8ml}[/tex]
[tex]l=\dfrac{n^2h^2}{8mE_o}[/tex]
[tex]l=\dfrac{(1)^2\times (6.63\times 10^{-34})^2}{8\times 9.1\times 10^{-31}\times 3.2\times 10^{-19}}[/tex]
[tex]l=1.88\times10^{-19}\ m[/tex]
(b) For first excited state, n = 2
[tex]E_1=\dfrac{(n)^2h^2}{8ml}[/tex]
[tex]E_1=\dfrac{(2)^2\times ((6.63\times 10^{-34})^2)^2}{8\times 9.1\times 10^{-31}\times 1.88\times10^{-19}}[/tex]
[tex]E_1=1.28\times 10^{-18}\ J[/tex]
(c) Let n is the value of quantum number of the excited state. Again using this formula as :
[tex]E=\dfrac{(n)^2h^2}{8ml}[/tex]
[tex]n=\sqrt{\dfrac{8ml E}{h^2}}[/tex]
[tex]n=\sqrt{\dfrac{8 \times 9.1\times 10^{-31}\times 1.88 \times 10^{-19} \times 30\times 1.6\times 10^{-19}}{(6.63\times 10^{-34})^2}}[/tex]
n = 3.86
or
n = 4
Hence, this is the required solution.