Answer:
[tex]\omega_f=571.42\ rpm[/tex]
Explanation:
It is given that,
Diameter of cylinder, d = 6.6 cm
Radius of cylinder, r = 3.3 cm = 0.033 m
Acceleration of the string, [tex]a=1.5\ m/s^2[/tex]
Displacement, d = 1.3 m
The angular acceleration is given by :
[tex]\alpha =\dfrac{a}{r}[/tex]
[tex]\alpha =\dfrac{1.5}{0.033}[/tex]
[tex]\alpha =45.46\ rad/s^2[/tex]
The angular displacement is given by :
[tex]\theta=\dfrac{d}{r}[/tex]
[tex]\theta=\dfrac{1.3}{0.033}[/tex]
[tex]\theta=39.39\ rad[/tex]
Using the third equation of rotational kinematics as :
[tex]\omega_f^2-\omega_i^2=2\alpha \theta[/tex]
Here, [tex]\omega_i=0[/tex]
[tex]\omega_f=\sqrt{2\alpha \theta}[/tex]
[tex]\omega_f=\sqrt{2\times 45.46\times 39.39}[/tex]
[tex]\omega_f=59.84\ rad/s[/tex]
Since, 1 rad/s = 9.54 rpm
So,
[tex]\omega_f=571.42\ rpm[/tex]
So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.