Respuesta :
Answer:
a. [tex]T=r^{3/2}[/tex]
b. [tex]K=\frac{1}{r}[/tex]
c. [tex]v=\frac{1}{\sqrt{r}}[/tex]
d. [tex]v=\sqrt{r}[/tex]
Explanation:
To make analysis about the satellite circular earth the depends or r and A
[tex]T^2=\frac{4\pi}{GM}*r^3[/tex]
[tex]K=\frac{GM*m}{2*r}[/tex]
a.
[tex]T^2=r^3[/tex]
[tex]T=r^{3/2}[/tex]
b.
[tex]K=\frac{GM*m}{2}*\frac{1}{r}[/tex]
[tex]K=\frac{1}{r}[/tex]
c.
[tex]K=\frac{1}{2}*m*v^2[/tex]
[tex]v^2=\frac{2*K}{m}=\frac{2*Gm*m}{2*m*r}[/tex]
[tex]v=\frac{1}{\sqrt{r}}[/tex]
d.
[tex]v=\sqrt{2*GMr}[/tex]
[tex]v=\sqrt{r}[/tex]
The way that the period, kinetic energy, angular momentum, and speed of the satellite depend on r are; 1) T ∝ r^(³/₂) 2) K.E ∝ 1/r3) L ∝ √r 4) v ∝ 1/√r
What are the physical properties of the satellite?
A) For circular motion, centripetal force is balanced by gravitational force. Thus;
F_centripetal = F_grav
mrω² = GM_earth*m/r²
⇒ ω² = GM_earth/r³
ω = 2π/T. Thus;
(2π)²/T² = GM_earth/r³
T² = ((2π)²/GM_earth)r³
(2π)²/GM_earth is a constant and as such we are left with;
T ∝ r^(³/₂)
B) Kinetic energy is expressed as;
K.E = ¹/₂mv²
Thus;
¹/₂mv² = GM_earth*m/r²
v² = 2GM_earth/r²
Reduces to;
v ∝ 1/√r
Since K.E ∝ v², then;
K.E ∝ 1/r
c) For the angular momentum, we have;
L = Iω
L ∝ √r
D) From B above we saw that for the speed, we have the expression;
v ∝ 1/√r
Read more about gravitational motion at; https://brainly.com/question/14393821