Suppose you are hiking down the Grand Canyon. At the top, the temperature early in the morning is a cool 1.15 °C. By late afternoon, the temperature at the bottom of the canyon has warmed to a sweltering 31.4 °C. What is the difference between the higher and lower temperatures in (a) Fahrenheit degrees and (b) kelvins?

Respuesta :

Answer:54.45[tex]^{0}F[/tex],30.25[tex]K[/tex]

Explanation:

Let [tex]t_{1f}[/tex] be the low temperature in fahrenheit.

Let [tex]t_{2f}[/tex] be the high temperature in fahrenheit.

Let [tex]t_{1k}[/tex] be the low temperature in Kelvin.

Let [tex]t_{2k}[/tex] be the high temperature in Kelvin.

Question a:

As we know [tex]\frac{c}{5}=\frac{F-32}{9}[/tex]

[tex]\frac{1.15}{5}=\frac{t_{1f}-32}{9}[/tex]

[tex]t_{1f}=34.07^{0}F[/tex]

[tex]\frac{31.4}{5}=\frac{t_{2f}-32}{9}[/tex]

[tex]t_{2f}=88.52^{0}F[/tex]

So the difference is [tex]t_{2f}-t_{1f}=54.45^{0}F[/tex]

Question b:

As we know [tex]c+273=k[/tex]

[tex]1.15+273=t_{1k}[/tex]

[tex]t_{1k}=274.15K[/tex]

[tex]31.4+273=t_{2k}[/tex]

[tex]t_{2k}=304.4K[/tex]

So the difference is [tex]t_{2k}-t_{1k}=30.25K[/tex]

ACCESS MORE